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Abstract—Most methods for structure-function analysis of
the brain in medical images are usually based on voxel-wise
statistical tests performed on registered magnetic resonance (MR)
images across subjects. A major drawback of such methods is the
inability to accurately locate regions that manifest nonlinear asso-
ciations with clinical variables. In this paper, we propose Bayesian
morphological analysis methods, based on a Bayesian-network
representation, for the analysis of MR brain images. First, we
describe how Bayesian networks (BNs) can represent probabilistic
associations among voxels and clinical (function) variables.
Second, we present a model-selection framework, which generates
a BN that captures structure-function relationships from MR
brain images and function variables. We demonstrate our methods
in the context of determining associations between regional brain
atrophy (as demonstrated on MR images of the brain), and
functional deficits. We employ two data sets for this evaluation:
the first contains MR images of 11 subjects, where associations
between regional atrophy and a functional deficit are almost
linear; the second data set contains MR images of the ventricles of
84 subjects, where the structure-function association is nonlinear.
Our methods successfully identify voxel-wise morphological
changes that are associated with functional deficits in both data
sets, whereas standard statistical analysis (i.e., t-test and paired
t-test) fails in the nonlinear-association case.

Index Terms—Bayesian network, Bayes procedures, computa-
tional anatomy, image analysis, image classification, morphology-
function analysis, voxel-based morphometry.

I. INTRODUCTION

VOXEL- and deformation-based morphometry have been
increasingly used to identify morphological abnormali-

ties, such as atrophy, without the need to define a priori specific
regions of interest (ROIs). Many different approaches [1]–[16]
have been proposed for generating statistical maps that iden-
tify groups of voxels that display differences in morphology,
or voxels for which significant correlations exist among mor-
phological and clinical measurements. Morphological measure-
ments can be computed from the deformation field used to spa-
tially normalize subjects into a stereotaxic space [7], [11], [13],
[14], [17], from residual variability in the spatial distribution of
gray and white matter after spatial normalization [1], [10], or
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from tissue-density maps obtained after mass-preserving spa-
tial normalization [4], [6].

For the purpose of morphology-function analysis, par-
ticularly voxel-wise morphometry, one of the first steps is
warping MR images into a normalized space (i.e., registra-
tion), to ensure that voxel attributes across subjects can be
compared. A widely used brain-image registration technique
is the smooth parametric transformation [1], [8], [9], [16],
which is provided as part of the SPM99 software package
(http://www.fil.ion.ucl.ac.uk/spm/spm99.html). Our group
previously developed another method referred to as spatial
transformation algorithm for registration (STAR) [4], which
utilizes a high-dimensional elastic transformation, coupled with
a procedure that preserves information about the volumes of
different anatomical structures, by constructing tissue-density
maps, in which relatively higher density of a particular structure
implies that this structure had a relatively higher volume prior
to spatial normalization. This procedure is a key component of
our approach, since spatial normalization changes the anatomy
of individual subjects, by making each subject’s anatomy
similar to that of a template. Therefore, applying a registration
algorithm that preserves volumetric information during spatial
normalization is critical.

Regardless of the type of morphological variables being con-
sidered, e.g., voxels or regions, most existing morphology-func-
tion analysis methods rely on voxel-wise linear statistics, such
as t-tests (TTs), paired t-tests (PTs), or analyses of variance
(ANOVAs). Such statistics compare only the means and vari-
ances of variables among different groups; therefore, methods
based on these statistics may not be able to detect nonlinear mor-
phology-function associations. Second, even for linear associ-
ations, these methods usually require a predefined confidence
interval, or p-value threshold, to generate ROIs. Third, these
statistical tests generally do not directly describe the relation-
ships among the generated ROIs. Other methods, such as prin-
cipal-component analysis and partial-least-square analysis [18],
can be expected to capture more complex morphology-function
associations. However, few of these methods can synthesize,
without user intervention, complex multivariate morphology-
function models. Thus, we distinguish between linear associ-
ations among continuous variables, which are readily evalu-
ated using methods based on the general linear model (GLM),
such as ANOVA or linear regression, and nonlinear associations
among continuous or categorical variables, which may not be
captured by GLM-based analysis.

In this paper, we use Bayesian networks (BNs) [19]–[21] to
represent probabilistic associations among MR image voxels
and clinical variables. A BN is a directed acyclic graph (DAG)
describing the probabilistic relationships among variables;
each node represents a variable, and directed edges coming
into a child node indicate that there are corresponding con-
ditional-probability distributions for the child, given the joint
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states of its parents. Each node without parents is associ-
ated with a prior-probability distribution. In this framework,
voxel-morphology variables and clinical variables are nodes,
and morphology-function analysis is equivalent to the genera-
tion of a BN from MR image data and clinical information for
each subject. Because BNs can represent any joint distribution
over discrete variables, they provide a powerful foundation for
the nonparametric analysis of nonlinear associations among
these variables. The BN-based methods that constitute our
Bayesian morphological analysis (BMA) algorithm are formal-
ized at the end of this section.

We evaluate our methods by simulating cerebral atrophy in
structural MR brain images, in the setting of changes in clin-
ical variables. Cerebral atrophy is a degenerative process that
generally occurs after 55 years of age, although it may occur
much more rapidly in certain diseases [22]. In this process, the
brain loses mass and volume, causing the cerebral sulci and
ventricles to dilate. Many cortical, subcortical, and mixed cor-
tical-subcortical encephalopathies, such as Alzheimer’s disease
and Parkinson’s disease, have atrophy as their primary struc-
tural manifestation. This application is a typical example of
morphology-function analysis, in which we seek to delineate
associations among brain morphological changes and clinical
variables, such as anomia (inability to name objects) or apraxia
(inability to perform tasks).

We have arranged this paper as follows. The remainder of this
section briefly introduces BNs. Section II describes an overview
of our approach, and presents two methods implemented within
the BMA framework for generating sets of equivalent voxels.
Section III describes our performance metrics. Sections IV and
V illustrate experimental results on a linear-association data set
of cerebral MR images, and on a nonlinear-association data set
of ventricular MR images, respectively. After discussion in Sec-
tion VI, we present our conclusions in Section VII.

A. Bayesian Networks

Suppose we have random variables ; a
BN for consists of a DAG structure , in which nodes corre-
spond to variables in (we, therefore, use the terms node and
variable interchangeably), and a set of local distribution func-
tions , where is the set of ’s parent nodes
and is the parameter set of all conditional probabilities.

The structure encodes conditional-independence state-
ments, such that [23];
that is, the structure of a BN defines a decomposition of a
joint distribution into the product of conditional-probability
distributions, based on the notion of conditional independence,
which we elaborate below. Many model-selection algorithms
[20], [24]–[27] have been proposed to construct BNs from data.
Often these algorithms are based on assumptions similar to the
following [20], [24], [27]–[30].

1) Each variable is discrete, having a finite number of states.
We use and to denote the th state of and the
th joint state of , respectively. We use to denote the

number of states of , and to denote the number of
joint states of .

2) Each local distribution function consists
of a set of distributions defined as the parameters

(1)

where for all , , , and . Denote
the parameter set .

3) The parameter sets are mutually independent, so that
.

4) Each parameter set assumes a Dirichlet distribution:
,

where each hyperparameter for every , , .
5) The data set is complete, that is, every variable is ob-

served in every case of .
Under these assumptions, the parameters remain independent

given

(2)

and the posterior distribution of each assumes the Dirichlet
distribution

(3)

where is the number of cases in in which and
. is the total number of cases in

which assumes the th joint parent configuration.
The closed-form solution for computing the probability that

data D could be generated by BN structure was first derived
in [28], [29]

(4)

where . As discussed in [27], [31], [32], the
choice of reflects a choice of prior distribution over ; al-
though most algorithms are based on a noninformative prior dis-
tribution, there is no consensus for the correct choice of to
achieve this goal, even for the simplest case, in which
(i.e., a binary variable). Two commonly specified values for
are 1 and ; based on our previous experience, we have found
that the choice of affects results only for small (i.e., under-
sampled) data sets; thus, we have chosen to set to 1 for
BMA and, therefore,

(5)

There are many heuristic and information-theoretic ap-
proaches to measuring how well a particular BN structure
represents the joint distribution inherent to the data; we have
chosen to base BMA on the metric in (5), since it has poly-
nomial computational complexity in the cardinality of ,
and can be combined with prior information, , regarding
associations among variables [28], [29].

Conventional statistical approaches to data analysis usually
require that the researcher specify a model prior to data collec-
tion, or at least prior to data analysis; greedy-search methods
are part of stepwise regression, among other conventional sta-
tistical methods, but have not been applied to morphology-func-
tion analysis. This aspect of the analysis is important because,
in the setting of morphology-function analysis, we may have
little or no knowledge of which regions undergo morphologic
change in the setting of a particular clinical syndrome; thus, we
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must specify a space of models to search, and a search algo-
rithm that, in conjunction with the model-scoring metric, will
generate the model representing the associations inherent in the
data. Because the number of possible BN structures is expo-
nential in the number of variables [33], it is impossible to com-
pletely search the space of all possible network structures to find
the best one, especially for voxel-wise morphometry, in which
there may be hundreds of thousands of voxel variables. As we
describe later, we solve this problem by heuristically searching
a specific subset of possible BN structures that represent asso-
ciations among voxels and clinical variables.

As stated above, BNs are based on the concept of conditional
independence among variables [21]. Variable is conditionally
independent of given variable if . In
this case, knowledge of will not alter the probability of ,
given knowledge of . If is empty, we say that and are
marginally independent. In this paper, we utilize the notion of
conditional independence to find candidate sets of equivalent
variables, in particular, voxels that have similar probabilistic as-
sociations with a function variable.

Latent-variable induction in BN models has been presented
as a clustering method [34]–[36]. In this paper, we use latent-
variable induction to generate sets of equivalent variables from
the above-mentioned candidate sets.

II. BAYESIAN MORPHOLOGICAL ANALYSIS

In this section, we propose a BMA algorithm, which detects
morphology-function associations between brain morpholog-
ical measurements and clinical variables. For convenience, we
use the terms voxel and voxel variable interchangeably. Like
other morphometry methods, BMA requires a preprocessing
stage for the images. BMA is based on the Bayesian metric (5)
and a heuristic model-selection method to generate a Bayesian-
network structure from the data. BMA generates sets of equiv-
alent voxels based on Bayesian thresholding (BT) or Bayesian
clustering (BC).

A. Image Preprocessing

The purpose of data preprocessing is to generate the image
portion of data for the BMA algorithm. For purposes of illus-
tration, most of our development will be presented in the context
of finding associations between longitudinal brain atrophy and
a function variable that might be associated with such atrophy.
Suppose we have longitudinal MR images (at times and )
of a group of subjects (labeled 1, 2, ), along with measure-
ments of a categorical clinical variable, , which could reflect
performance on a neuropsychiatric battery of tests. The three
major image-processing steps in the BMA framework, i.e., reg-
istration, subtraction and thresholding, are shown in Fig. 1.

1) Registration: In the registration step, brain images of
different sizes and shapes are warped to a stereotaxic
canonical space. In this paper, we have employed STAR
[4], [12], which is a high-dimensional elastic-regis-
tration method. Unavoidably, registration introduces a
complication, namely that it changes the morphology of
an individual’s brain. Therefore, it would be pointless
to examine the morphology of spatially normalized
brain images in a structure-function analysis. In order to
overcome this problem, we use an approach referred to

Fig. 1. Three major image preprocessing steps: registration, subtraction and
thresholding (binarization).

as regional analysis of volumes embedded in stereotaxic
space (RAVENS), which is described in detail in [4],
[6], [12]. In this approach, three-dimensional (3-D)
density maps for each tissue class, such as gray matter,
white matter, and cerebrospinal fluid, are generated
separately. For example, assume that an individual
brain has, due to atrophy, larger ventricles than those
in the canonical-space template. Then the density of
the corresponding CSF map will be high after spatial
normalization, reflecting the fact that a relatively larger
volume of CSF is forced to fit into a relatively smaller
space. More generally, RAVENS maps reflect the re-
gional volumetric structure of the brain of each subject,
with the tissue density of any structure being proportional
to the actual volume of the structure in an individual
brain, prior to spatial normalization. Since these maps
are registered and reside in the same canonical space,
they can be overlaid and analyzed on a voxel-wise basis.

2) Subtraction: We subtract the pair-wise RAVENS
maps to generate a difference image for each subject;
this image reflects longitudinal voxel-wise morpholog-
ical changes for each subject. Due to volume contrac-
tion, atrophic regions in images will, on average, have
lower intensity than the corresponding regions in im-
ages, since image intensity of the RAVENS maps reflects
tissue density. As a result, the difference maps
will generally have positive values in these regions, and
negative values for regions that dilate over time, such as
ventricles in the setting of progressive cerebral atrophy.

3) Thresholding: Our current method applies only to cate-
gorical variables. Therefore, we binarize the longitudinal
difference maps by thresholding them at zero. That
is, a voxel with a value larger than 0 is set to state 1
(for “volume contraction”) otherwise the voxel is set
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to state 0 (for “no volume contraction”). In regions of
atrophy, binary-map voxels will in general assume state
1. At all other locations the binary maps would have
approximately equal probabilities of assuming state 1 or
state 0, because of noise or other factors that may make
a voxel appear to have enlarged or shrunk when in fact it
did not change. These binary maps are used as the image
data provided to BMA.

In BMA, the data satisfy the five assumptions upon which
(2) is based. We ensure that the voxel and function data are
discrete, to satisfy assumption 1), as described in the previous
paragraph. The principal advantage of working with discrete
variables is the ability to detect multivariate nonlinear associ-
ations among these variables; thus, although there are methods
for generating continuous-variable BNs from data, we chose not
to implement them because they are restricted to modeling mul-
tivariate Gaussian distributions over these variables. We model
associations among variables using edges in a BN, which cor-
respond to conditional-probability distributions, as specified in
assumption 2). We assume independence of distributions, since
we have no domain-specific knowledge that would lead us to
assume dependence among these distributions. In fact, this as-
sumption is almost always applied in practice; it is rare to work
with data for which knowledge of one variable’s conditional-
probability distribution will constrain other variables’ distribu-
tions. There is nothing specific to morphological analysis that
makes unreasonable the assumption of a Dirichlet distribution
over conditional probabilities; see also Heckerman [20] for a
discussion of the application of these prior distributions when
generating BNs from data. In addition, it is reasonable to as-
sume that these distributions are stationary across subjects; that
is, we assume that the nature of the structure-function relation-
ships that we seek to elucidate do not change over time or across
subjects. Finally, we work with complete data in the experiments
presented here; in the setting of morphological analysis, there
will virtually never be missing values for the voxel or function
variables.

B. Generating a Bayesian-Network Structure From Data

In BMA, a Bayesian-network structure is constructed from
data to achieve two goals: 1) to identify voxels associated
with the function variable; 2) to classify these voxels into proba-
bilistically homogeneous subsets or clusters, each of which has a
single representative voxel, whose association with the function
variable is similar to those for the other members of that cluster.
The initial network consists of all voxels and the function vari-
able, , with no edges among these variables. The first step re-
sults in the addition to this network of a few edges from rep-
resentative voxels to the function variable; all of the remaining
voxels have no edges. In the second step, each representative
voxel is associated with a cluster of probabilistically equivalent
voxels; this switch from voxels to voxel clusters is a form of
data reduction. These two steps are repeated in each iteration
of BMA. We next consider three major implementation issues:
the subset of possible Bayesian-network structures considered,
the metric used to compare network structures, and the search
strategy.

We base BMA on a network structure in which we postu-
late that possesses associations with representative voxels,

whereas each pair , , , are independent (i.e., there is no
edge between and ). In other words, the final network gen-
erated by BMA will contain representative voxels, the function
variable, and an edge from each representative voxel to the func-
tion variable. This network structure is able to capture complex
associations among these variables; that is, the resulting net-
works can represent multivariate nonlinear associations among
representative voxels and the function variable.

We use the Bayesian metric [28], [29] , which is the
conditional probability of network structure given the data ,
to evaluate candidate Bayesian-network structures. has
the following form:

where we use (5) to compute .
A larger Bayesian metric value indicates a higher probability

that the corresponding Bayesian-network structure could have
generated the observed data. Since we have no a priori prefer-
ence regarding network structures, we assume the prior is
uniform, as in [28], [29]. Furthermore, because the prior prob-
ability of observing the data is a constant, is propor-
tional to the likelihood function, i.e., , which
takes the form of (5) for discrete variables. For computational
purposes, we redefine the metric as the logarithm of (5).

C. Model Selection

Here, we wish to obtain a set of clusters, each of which con-
tains voxels that have similar probabilistic associations with the
function variable, . In this paper, we employ the concept of
probabilistic equivalence: two variables and are probabilis-
tically equivalent if and have the same number of states,
and for each state. Similarly, we de-
fine two voxels , to be probabilistically equivalent with
respect to and a set of voxels to mean that the two distri-
butions , are similar, by some measure.
Each cluster is characterized by a representative voxel, to which
the remaining cluster members are compared for probabilistic
similarity. We propose the method shown in Fig. 2 to generate
these clusters of equivalent voxels.

The procedure in Fig. 2 can be understood step by step as
follows. We begin with a set, , initially containing all image
voxels, and a set of representative voxels, , that is initially
empty. During the th iteration of the algorithm we add a rep-
resentative voxel, , to , and determine the set of voxels that
are probabilistically similar to ; this set is called the equiv-
alence set for . To find this representative voxel, our algo-
rithm first compares pairs of Bayesian-network structures with
and without an edge from each voxel to , in the presence
of edges from current members of to (shown as step 3 in
Fig. 2 and structures and in Fig. 3). In particular, to find
the variable that has the strongest association with , the algo-
rithm compares each pair of BNs shown in Fig. 3(a) and (b) over
all by computing the difference metric:

(6)

Since is a function of , we denote it as . We call
the set of all for which an edge from to is favored (i.e.,
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Fig. 2. Flowchart of the algorithm for equivalence-set generation.

) the set of associated voxels, A. From this set, we
obtain the maximum and the corresponding voxel

(7)

(8)

If there are several voxels whose difference-metric values are
equal, we choose the variable with the maximum to be
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Fig. 3. Alternative structure-function Bayesian-network models S and S .
The difference between model S and S is the presence of the edge from v

to f .

. If there are still several voxels with the same metric value,
we arbitrarily choose one of them to be . If , the
data do not favor an edge from any voxel to in the presence of

, hence our algorithm stops (this condition is equivalent to the
judgment in Step 8 of Fig. 2). Otherwise, we set , add

to , and remove from .
Subsequent to the first iteration, we must generate the set of

voxels that are probabilistically similar to . To do so, we
next consider , the complement of (with respect to , the
set of all voxels); this set contains voxels for which we could not
establish an edge to , in the presence of . We call the can-
didate set for the representative voxel , because any voxel
that is a member of is still associated with in the presence
of and is, thus, unlikely to be probabilistically similar to any
of the previously added representative voxels, including .
We then apply one of the methods described in the next section,
BC or BT, to this candidate set , to generate , the set of
voxels equivalent to . We then remove all voxels in
from , and we set cluster to be the union of and

.
This process continues until the set of voxels, , is empty

(step 12 in Fig. 2). Finally, the algorithm displays all clusters of
probabilistically similar voxels, as volumes of interest. In addi-
tion, we can examine the conditional-probability distributions

, which are proxies for .

D. Bayesian Thresholding

As stated previously, in this paper we employ the concept of
probabilistic equivalence: two variables and are probabilis-
tically equivalent if and have the same number of states, and

for each state. Our goal is to determine
the subset of voxels in a representative voxel’s candidate set that
are equivalent to that representative voxel.

A straightforward method to find the equivalence set of a rep-
resentative voxel is BT, which determines whether the associ-
ation between each candidate-set voxel and the representative
voxel is strong. In BT, two “equivalent” binary variables and

are required to satisfy the following conditions:

(9)

where is a predefined threshold in [0, 1].

E. Bayesian Clustering

The major drawback of the BT method (as well as other
threshold-based methods) is its reliance on a predefined

Fig. 4. The latent-variable Bayesian-network structure for the BC method.

threshold. We, therefore, developed another BMA algorithm,
based on latent-variable induction in BNs, to cluster the
candidate set and obtain the equivalence set. In this approach,
we transpose the data , i.e., we consider a pseudovariable set

, where each is the variable representing all th cases of
every variable in the candidate set (e.g., the th voxel for each
subject), and we regard the original variables as pseudocases.
The pseudodata are denoted as . Fig. 4 shows this approach,
where is a discrete latent variable with states, and with
edges into each of the pseudovariables , .
Each state of corresponds to a set of pseudocases, i.e., all
of the pseudocases for which assumes the th state are
clustered as one class. The joint distribution of is given in
the following multinomial form:

(10)

To perform clustering using this approach, we assume a
number of states for the latent variable , and then estimate
the unobservable state for in each case. An approximation
method [35], based on the Laplace approximation and either the
Bayesian information criterion, a minimum description length
metric, or the Cheeseman–Stutz approximation, can be used.
An alternative method is based on Monte Carlo approximation,
which will produce a more accurate result if given enough
time [35]. In this paper, we consider one specific Monte
Carlo method, the Gibbs sampler [37], because we want the
clustering results to be precise, while reducing computational
requirements.

In the Gibbs-sampler approximation, we first randomly ini-
tialize the unobservable pseudocases of (with the assumed
number of states ). Then we sequentially unassign for each
pseudocase, and calculate the probability for each possible state,
given the other pseudocases

(11)
where denotes the data set with set to “unknown”
for th pseudocase, and is the model shown in Fig. 5. Since
both the numerator and denominator are probabilities that are
computed based on an assumption of complete data, they can be
computed using (5). Then, the results of (11) are used to sample
a new pseudocase. Next, all unobserved data are reassigned to
produce the new data . We iterate this procedure until the
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Fig. 5. Detection results for the paired t-test (PT), BT, and BC methods for linear morphology-function associations. (a),(b) Intensity plots of the average binary
maps for the right PCG and left STG, where atrophy was simulated. Pixel intensity is proportional to the summation of binary maps, where 1 stands for volume
loss and 0 for no volume loss. (c) The ground-truth image for the STG. The colored region is the smoothed ground truth, which is overlaid on one subject’s image
(gray) to aid visualization. (d)–(f) Detection results for the PT, BT, and BC methods.

distribution of model parameters in Fig. 5, which takes the form
of (2), converges. We can rewrite such an indexing function as

(12)

To calculate (12), we use (3) and (1). After the indexing func-
tion converges, typically most of the unobserved cases of the la-
tent variable will not change states. Recall that those pseudo-
cases where the latent variable takes the same state are treated
as one cluster. Hence, we can find the pseudocases for which the
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corresponding voxels assume the same state as the representa-
tive voxel; these voxels constitute the equivalence set for the
representative voxel.

We call this clustering method BC; it has also been referred
to as the candidate method [35], [38], [39]. In [35], the authors
were interested primarily in the indexing function value in
(12), as opposed to the clustering results; this value is used
to decide when the algorithm has converged. In the setting
of morphology-function analysis, we are primarily concerned
with whether the clustering results are meaningful. Further-
more, in contrast to [35], we do not use the normalized model
parameters .

The computational bottleneck of BC is (11). Fortunately, we
can simplify this equation as the relative value of (5), which ob-
viates computation of Bayesian metrics over the whole BN in
Fig. 5. In our implementation, this optimization greatly acceler-
ates the Monte Carlo method, especially when there are many
variables (pseudocases) in a candidate set.

The parameter , the number of clusters, must be set; how-
ever, it is not difficult to choose this parameter. First, when
is larger than a critical value , which is the real number of
clusters, the indexing function, (12), will typically converge to
a value that is independent of . Second, when , the
latent variable will usually have states after convergence.
Therefore, we can simply set to a large value, say 6 or 7, even
when we only expect to find 2 or 3 clusters. The only drawback
of beginning with a large value for is greater computational
burden, which is not critical in practice.

III. PERFORMANCE METRICS

To evaluate the performance of BMA, we must choose met-
rics that reflect the accuracy of detection of morphology-func-
tion associations; we do so with the knowledge that, for sim-
ulated data, we will have ground truth (or an approximation
thereof) available.

Toward this end, we denote the result of BMA as ; this set
is the union of the clusters, which include representative voxels
and their corresponding equivalent voxels. Similarly, let us de-
note the original image data provided as input to BMA as ,
and the ground truth as . A natural way to measure the per-
formance of the algorithm is to define the signal-detection rate
(SDR) and the signal-to-noise ratio (SNR) as follows:

(13)

(14)

where is the operator to calculate a region’s volume, i.e.,
the number of voxels in that region. SDR measures the fraction
of ground-truth voxels in that are included in , and SNR
indicates the degree of false-positive detection. When the extent
of the ground truth is contained within the original image
data , (14) can also be written as

We expect that SNR may be larger than 1. Nonetheless, when
the ground-truth region is not in accordance with the input
data , it is possible that the algorithm might detect association
regions not belonging to . Hence both SDR and SNR can only

be used as references, and alternatively a better way to evaluate
performance is to compare the input data and the detection
result directly.

Although ideally morphology-function analysis would max-
imize SDR and SNR, if the data contain redundant variables
(for example two variables, one in and the other in (i.e.,

), that have the same state for each case), there is no way
to distinguish them without spatial information. We can expect

if is in concordance with (i.e., if is very ac-
curate), in which case it is possible to derive the theoretical SDR
and SNR based on Bayes’ theorem. Furthermore, we can claim
that the morphology-function analysis algorithm performs well
if both SDR and SNR are close to their respective theoretically
maximal values. However, in this paper we do not have an ac-
curate for our data sets (although it is still very interesting
to compare with ), hence we omit the derivation of the
theoretical SDR and SNR.

In addition, we can perform receiver operating characteristic
(ROC) curve analysis [40], [41], which involves computing the
true-positive rate (TPR) and the false-positive rate (FPR) while
varying algorithm parameters, such as the BT threshold. TPR
indicates the sensitivity of the method, and the false-negative
rate indicates the specificity of the method.
We can write TPR and FPR in terms of SDR and SNR

(15)

(16)

These equations demonstrate that ROC-curve analysis is equiv-
alent to SDR/SNR analysis. Therefore, we present only ROC
curves in the following experimental sections.

IV. EXPERIMENTS FOR LINEAR DETECTION

This section addresses the problem of detection of a linear
morphology-function association: a subject has a functional
deficit whenever there is significant atrophy in a certain
region. The goal of this experiment is to establish that, despite
discretization, BMA has high sensitivity for the detection of
morphology-function associations, approximating that of a
standard statistical method, such as the TT.

A. Data

For this experiment we used a set of simulated cere-
bral-atrophy MR images, which were based on T1-weighted
gradient-echo SPGR images of 11 normal elderly subjects
(average age is 70.1 years, standard deviation 5.9). We selected
two gyri, the right precentral gyrus (PCG) and the left superior
temporal gyrus (STG), in all subjects; both gyri were manually
defined using the DISPLAY software package distributed by
the Brain Imaging Center, Montreal Neurological Institute.
We then introduced a 30% uniform contraction of the labeled
gyri, and created 11 additional images with localized atrophy
in these gyri. We called the labeled region of each subject the
atrophy mask. For each subject, we called the image without
atrophy the image, and we called the image with simulated
atrophy the image. These simulated data are similar to those
expected in a longitudinal study, because each ( and ) pair
of images belongs to the same subject, the only difference
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between the two being localized atrophy. These 22 images, as
well as the corresponding atrophy masks, have also been used
in [6].

We registered these 22 3-D images with the STAR algorithm,
generating RAVENS maps. The size of each RAVENS map
was . The voxel resolution for each spatial
dimension was 0.9375 mm. As explained in Section II-A,
the 3-D elastic warping transform in the STAR algorithm
preserves the brain mass of each image volume; therefore,
atrophic regions in a subject’s image had lower mean
intensity than did the corresponding regions in that subject’s

image. Due to memory limitations of our workstation, we
down-sampled each image by a factor of 2, and cropped all
images to the largest brain-region bounding box across all
images. Each of the smaller images
contained . For each subject, we
repeated the warping, down-sampling and cropping procedure
(with the same parameters) on the corresponding atrophy mask
and obtained 11 RAVENS maps of atrophy masks (we still call
them atrophy masks for convenience). These atrophy masks are
slightly different from each other; therefore, we superimposed
these atrophy masks and binarized them with the threshold

to generate a binary “ground truth” atrophy
volume, .

To correct registration errors, we applied an isotropic
Gaussian-smoothing kernel to these images, as is customary
in voxel-based morphometry [1], [8], [9], [16]. We applied
the same smoothing kernel to , in order to generate a
ground-truth mask for the results obtained from a statistical
analysis applied to smoothed images. We previously found the
optimal diameter, in the sense of atrophy detection, for these
data set to be 9 mm [6]; therefore, we show experimental results
using a 9-mm smoothing kernel only, although we have tested
other smoothing kernels, as reported below. In this context,

.
Of note, is the thresholded mean value of the original
atrophy masks, however some brain regions other than
will also have significant intensity differences. Hence, for this
data set, neither the nonsmoothed nor the smoothed is
completely accurate, although they do indicate the locations of
greatest morphological change.

We then applied the subtraction and binarization prepro-
cessing steps, as shown in Fig. 1, to the smoothed images,
to generate 11 binary maps, and included a value for for
each subject, to indicate whether that subject had a functional
deficit. In addition to the binary maps corresponding to ab-
normal function, we required binary maps for subjects with
normal function. Hence, we created an additional 11 binary
maps in which all voxels, and , are normal (i.e., no atrophy
in images), assuming the value zero. Another reason for
these zero maps is due to Gaussian smoothing. Because the
Gaussian-smoothing operation includes a large region around
each voxel (i.e., 9-mm kernel diameter relative to 0.9375-mm
voxel size), the value of each smoothed voxel is calculated
based on the values of hundreds of neighboring voxels. If
there were no atrophy in images, we would expect that
after smoothing, a given voxel’s intensity in the and
images would be approximately equivalent. Therefore, after
subtraction and binarization, most voxel values would be 0.

The entire data set, with 22 simulated binary maps, consisting
of 11 cases for which and 11 cases for which

, were used as input to the BMA algorithm.

B. Results

We compared our Bayesian methods with the standard paired
-test (PT) method (provided in SPM99). For simplicity, we call

our methods BT and BC, although they differ only in Step 5 in
the algorithm listed in Fig. 2.

Fig. 5(a) and (b) shows intensity plots of the average bi-
nary maps at the locations of simulated atrophy. Comparing the
smoothed ground truth for the STG in Fig. 5(c) with results in
Fig. 5(b), we see that there are false-positive regions outside
(the ground-truth region) and false-negative regions inside .

In Fig. 5(c)–(f), we show atrophy-detection results versus
ground truth for the association between the status of and
the status of the STG. The parameters are for BT;
initial number of clusters , and maximum number of

for BC; and significance threshold
for the PT -statistic map. Note that in each step of BC, al-
though was initialized to 7, the BC algorithm returned only
those voxels with the same state as the current representative
voxel. The colored region in Fig. 5(c) is for STG atrophy,
behind which the grayscale image corresponds to a randomly
chosen subject’s brain, which serves as an anatomical reference.
Comparing Fig. 5(d)–(f) with Fig. 5(b), we see that both BT
and BC correctly identify most ground-truth voxels, whereas PT
finds only a subset of , even with a relatively low threshold

.
As expected, the results of BT and BC overlap, except for a

few noisy regions in BC. This noise exists partly because BC
is based on Monte Carlo iterations, so a few pseudocases of
the latent variable may change states even when the maximum
number of iterations has been reached.

In Fig. 6(a) and (c), we show ROC curves for both nons-
moothed and smoothed gold-standard regions, respectively.
Fig. 6(b) and (d) show the portions of the corresponding ROC
curves in Fig. 6(a) and (c) for which we have restricted the
analyses to parameter values for each method that would be
used in practice. As seen in Fig. 6(b) and (d), for comparable
FPRs, BT is more sensitive than PT, although the difference is
small. Furthermore, although BC always has a higher FPR than
BT and PT, BC also has a higher TPR than BT and PT. When

is lowered to 0.6, BT produces results very similar to those
of BC. However, for BT we do not know the optimal threshold
beforehand, whereas BC does not depend on a user-defined
threshold. Our current implementation of BC requires a value
for ; however, we could automate this choice, because when

is large enough (for example, 4 for these experiments),
the resulting clusters are similar in each trial. The difference
in the FPRs for BC for different values of is primarily
due to a value for that is too small, which forces incorrect
clustering, whereas a large value distributes errors across
clusters. As for PT, changing the threshold to yield higher
TPRs in Fig. 6(b) and (d) results in an unacceptable value for

( is too small to reflect significant variations in the
-map) for realistic applications. However, when is set to

values typically used in practice (e.g., 10), only a small fraction
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Fig. 6. ROC curves for the PT, BT, and BC methods. Labels for the PT method are t-score thresholds (t ); labels for the BT method are conditional-probability
thresholds (P ), as defined in (9); labels for the BC method are initial numbers of clusters (r ), as defined in (11). (a) ROC curve (nonsmoothed C ) for all
parameters; (b) ROC curve (nonsmoothed C ) for meaningful parameters; (c) ROC curve (smoothed C ) for all parameters; (d) ROC curve (smoothed C ) for
meaningful parameters.

of ground-truth voxels ( 10%) are detected. Thus, settings for
which PT has low FPR also result in low TPR. For example,
when , the corresponding TPR is 0.0034, which
means that only about
are detected. In addition, PT shares BT’s drawback of requiring
a user-set threshold.

One problem that all three methods share is a relatively
high FPR. Recall that , and

; thus, if we wanted no more than 10%
of detected voxels to represent false-positive detections, this
would require an FPR of ,
which is not achieved by any of the three methods at realistic
parameter settings. However, Fig. 5 demonstrates that the
false-positive voxels do not impede visual interpretation of
detection results; it is clear that all three methods detect both
the right precentral gyrus and the left STG.

V. EXPERIMENTS FOR NONLINEAR DETECTION

In this section, we further evaluate the performances of these
methods on a more difficult problem, in which ventricular en-

largement, a proxy for cerebral atrophy, in only a specific non-
linear combination of locations, is associated with a functional
deficit. This structure-function relationship is one that cannot
be captured by standard linear statistical tests, and analysis of
these data, therefore, demonstrates the principal strength of our
approach.

A. Data

For this experiment, we used 168 T1-weighted SPGR images
obtained from 84 normal elderly subjects. These subjects have
different degrees of cerebral atrophy. For each subject, there are
two images that were scanned with a 5-year interval between
times and . We manually segmented these images and ob-
tained a lateral-ventricle (LV) mask for each image. For the pur-
poses of this experiment, we called the smaller LV image of a
subject the LV, and the larger LV image the LV; that is,
we arranged the data to make all LVs larger than the corre-
sponding LVs. On average, LVs were approximately 20%
larger than LVs. We normalized these LV images using the
STAR algorithm, and obtained two RAVENS maps for each sub-
ject. Because cerebral atrophy is indirectly manifested as LV
enlargement, the RAVENS maps have higher values than the
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TABLE I
DESIGN OF A NONLINEAR-ASSOCIATION DATA SET, IN WHICH ENLARGEMENT OF BOTH LATERAL VENTRICLES IS ASSOCIATED WITH A FUNCTIONAL DEFICIT,

HOWEVER, ONLY LEFT LATERAL-VENTRICULAR ENLARGEMENT EXHIBITS A LINEAR ASSOCIATION WITH THE FUNCTION VARIABLE. L = LEFT LATERAL

VENTRICLE, R = RIGHT LATERAL VENTRICLE, f = FUNCTION VARIABLE, A = ABNORMAL (SIZE OR FUNCTION), AND N = NORMAL (SIZE OR FUNCTION)

respective maps. Then we defined the left and right LVs in
the spatially normalized RAVENS maps.

Our aim in this experiment was to use synthetic data to eval-
uate the performance of the BC, BT, and TT (i.e., standard -test)
approaches on the following nonlinear detection problem: the
function variable has associations with the states of both LVs,
however only left lateral-ventricular enlargement is linearly
associated with . We designed the data set, swapping and
maps when necessary, and selecting values for , such that right
lateral-ventricular enlargement has no univariate association
with the function variable; that is,

.
Since we had ensured that all LV RAVENS maps have higher
values than the corresponding maps, we next constructed 8
groups of images that displayed different patterns of ventricular
enlargement.

To construct these 8 groups, we performed the following four
steps:

1) We generated four ventricular-enlargement patterns,
, , , and , which stand for normal

lateral ventricles, left lateral-ventricular enlargement
only, right lateral-ventricular enlargement only, and bilat-
eral lateral-ventricular enlargement, respectively. These
patterns are shown in the third, fourth, and fifth columns
of Table I. Since we refer to ventricular enlargement as
the situation in which the ventricular RAVENS map
has a larger value than the corresponding ventricular
RAVENS map, to create the normal lateral ventricle, we
swapped the and lateral-ventricular RAVENS maps
to guarantee that the map has the larger value.

2) We randomly assigned the 84 subjects among 8 groups, as
described in Table I. For example, group 3 has 8 subjects,
each of which has pattern , i.e., abnormal (enlarged)
left lateral ventricle and normal right lateral
ventricle .

3) For each group of subjects, we swapped the and ven-
tricular RAVENS maps according to the patterns of ven-
tricular enlargement listed in the fourth and fifth columns
of Table I, and set the respective function-variable state
according to the sixth column of Table I. For each case
in which lateral-ventricular enlargement was not present
(i.e., normal), we swapped maps, to ensure that the
map had a smaller ventricle than the map. For each
case in which there was lateral-ventricular enlargement,

we performed no swap, since we started with cases in
which the ventricles were larger than the ventricles.
For example, for both lateral ventricles in the first group
(with 13 subjects), we swapped the and ventricular
RAVENS maps so that maps ended up having smaller
ventricles than those in the corresponding maps, thus
ensuring that this group displayed no ventricular enlarge-
ment. We set the function variable for this group to N
(normal). Another example is the 6th group (with 5 sub-
jects), for which we swapped only the left lateral ventric-
ular and RAVENS maps, but did not swap the right
lateral-ventricular maps, thus ensuring that the data for
this group displayed only right-sided ventricular enlarge-
ment. We set the function variable for this group to A
(abnormal).

4) From the statistics listed in the seventh and eighth
columns in Table I, we designed a simulated data
set in which morphological changes in both lateral
ventricles have strong associations with the presence
of a functional deficit. When both lateral ventri-
cles are enlarged, i.e., pattern , a functional
deficit is highly likely ,
whereas unilateral ventricular enlargement is asso-
ciated with a much lower risk of functional deficit
( and ).
Of note, there is no univariate association between
right lateral-ventricular enlargement and the presence
of a functional deficit ( and

), whereas left lateral-ven-
tricular enlargement is associated with the presence of
a functional deficit ( and

).
Subsequently, we obtained 84 binary maps after subtraction

(we used here, in contrast to the experiment in the last
section) and binarization steps. As indicated by the state of for
each simulated subject in Table I, we have 42 normal subjects
and 42 abnormal subjects, with functional deficits arising under
specific spatial patterns of cerebral atrophy (and, therefore, ven-
tricular enlargement). The average binary map for these 84 sub-
jects is shown in Fig. 7(a).

B. Results

We applied BT, BC, and TT to these data. From the design of
this experiment, we knew that the states of both lateral ventri-
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Fig. 7. Average binary map of the lateral ventricles over all subjects, and
detection results of TT, BT, and BC for nonlinear morphology-function
associations. The red and white regions correspond to two clusters found by
BT and BC. The result for TT is painted red because it corresponds to the
red regions in BT and BC results. (a) Average binary lateral ventricles over
all 84 subjects (axial view from below); (b) TT (p = 0:05) (axial view
from below); (c) BT (p = 0:8) (axial view from below); (d) BC (r = 3,
iteration = 50) (axial view from below).

cles are jointly associated with the functional deficit, but that the
state of the right lateral ventricle is not linearly associated with

. Hence, a standard linear statistical test, such as the -test,
barely detects right lateral-ventricular enlargement, although
as expected it detects left lateral-ventricular enlargement.
Fig. 7(b) shows the results for the TT method, where only the
left lateral ventricle is detected on the thresholded -map (with
threshold -value ). In contrast, results for BMA, shown
in Fig. 7(c) and (d) (with parameters and ),
both BT and BC detect morphology-function associations for
both lateral ventricles. These results confirm our expectation
that BT and BC can detect nonlinear morphology-function
associations.

In the BC results shown in Fig. 7(d), left lateral-ventricular
voxels do not appear as bright as those for the BT results in
Fig. 7(c), due to the imperfect convergence of the Monte Carlo
iteration in BC. Despite this, the results of BT and BC agree
well with each other.

VI. DISCUSSION

We have demonstrated that Bayesian methods for mor-
phology-function analysis can detect linear and nonlinear
associations among voxels and function variables. Although
standard methods of analysis, such as the production of -maps,
may detect lower order associations as well as BMA, they
may not detect nonlinear multivariate associations as well as
BMA. In addition, BMA is generally applicable to similar
problems, such as detection of morphology-demographic (e.g.,
age, socioeconomic status) associations. Although it might be
reasonable to expect PT to outperform BMA for linear-associa-
tion detection, it may be the case that discretization of the voxel
data increases statistical power by eliminating Gaussian noise.

For the data in Section IV-A, in which we used a 9-mm-di-
ammeter Gaussian smoothing kernel, the intensity difference
between smoothed and voxels was very small, typically
within the range [ 10, 10]. Hence, the naïve binarization
threshold 0 appeared to be necessary, because a threshold larger
than 0 would have resulted in too much signal loss and, thus,
very low TPR. One solution would be to increase the contrast of
the comparison maps. For example, we could voxel-wise divide
the image by the image; this operation would produce ratio
maps with much higher contrast than difference maps. This
higher contrast would allow us to manually or automatically
choose a better binarization threshold to maximize theoretical
SNR and/or SDR. Furthermore, in those cases for which we
have better ground-truth information, we could calculate the
best SNR and/or SDR for many different Gaussian-kernel
diameters to find the optimal kernel.

We had previously evaluated the image data presented here,
with regard to the effects of smoothing on subsequent morpho-
metric analysis, and found that a 9-mm Gaussian kernel pro-
vides the best results [6]. However, we expect that data acquired
from different scanners, using different sequences, will require
different smoothing kernels, or perhaps no smoothing at all. In
addition, there is clearly an interaction between the characteris-
tics of the registration algorithm applied to the image data, and
the optimal smoothing kernel. The principal limitation of the
application of larger smoothing kernels is loss of sensitivity for
morphological changes in small structures. Thus, if the goal of
morphometry is to analyze changes in a small structure, such
as the hippocampus, the optimal smoothing kernel will almost
certainly be much smaller than 9 mm; in fact, it may be optimal
to forego the increased SNR that smoothing provides, in order
to prevent loss of sensitivity due to averaging with large number
of neighboring (i.e., nonhippocampal) voxels. It is important to
note that these smoothing effects are not unique to BMA; they
would obtain regardless of which morphometry-function anal-
ysis paradigm is subsequently applied.

In addition to smoothing, registration of image data to a stan-
dard is a crucial preprocessing step that can affect the accu-
racy (and statistical power) of subsequent morphometry; in this
sense, our results are conditioned on the accuracy of our reg-
istration algorithm. In addition, we have emphasized the im-
portance of mass-preserving transformation, which allows us to
perform RAVENS analysis; a registration method that does not
preserve mass would confound subsequent morphometry. Al-
though we have found, in previous validation experiments, that
our registration methods have accuracies comparable to or better
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than those generally reported, we expect that for morphometry
of very small structures, such as the hippocampus or hypothal-
amus, additional constraints on registration (perhaps provided
by identification of fiducial points) will be required to provide
sufficient registration accuracy. Furthermore, we note that we
expect to be cautious when interpreting the results of clinical
studies in which we have registered images, because regions in
which no morphological effects are detected might be involved
to an extent not observable given registration accuracy.

Although we present experiments for binary morphometric
variables only, BMA can also analyze multi-state discrete
variables. This choice of binary voxels variables confers the
advantage of voxel states having clear meanings, (i.e., at-
rophy/normal), simplifies thresholding in image preprocessing,
and simplifies implementation of the BT algorithm. However,
there are no constraints on the number of states for any variable
in (5), or for the BC method, so there is no inherent reason
that we could not increase the number of states considered
for each voxel variable. For example, we could threshold 3
states for each voxel variable, representing contraction, no
change, and expansion. This or similar modifications might be
useful to detect more general morphology-function changes. In
conjunction with this extension, we would threshold RAVENS
maps using an unsupervised clustering method, thus providing
a sound basis for thresholding of voxel-wise volume changes.
Even for binary variables, one could argue that thresholding at
0 (i.e., enlargement/no enlargement) might not be optimal; for
example, if there were a structure that did not cause functional
impairment until it lost 25% of its neurons, thresholding to
detect any volume loss would reduce sensitivity to functional
impairment.

Modifying BMA to support the analysis of two or more func-
tion variables is straightforward; in particular, BMA would re-
turn a BN in which a subnetwork is generated for each function
variable. As in the previous paragraph, there is no inherent lim-
itation in (5), or in the BT or BC methods, aside from compu-
tational burden, on the number of function (or voxel) variables.
In addition, adding a final search for additional or redundant
edges among cluster and function variables would not signifi-
cantly increase the computational requirements of BMA, since
the number of variables (clusters + function variables) is greatly
reduced relative to the number of voxels provided as input.

We have assumed that we need not compare all possible
BNs to generate an adequate network structure. Regardless
of whether this assumption is correct, the model-selection
algorithm will produce the correct first representative voxel.
However, this assumption is probably incorrect for networks
with more than one representative voxel, due to the limitations
of our heuristic-search algorithm. The greatest limitation of
our search algorithm would be in detection of the probabilistic
equivalent of an AND gate; the existence of even a slight
lower order association between representative voxel(s) and
a function variable would enable BMA to detect the next
higher order associations, if they exist. Extending the depth
of search to th higher order associations would increase the
computational complexity of search polynomially (degree ),
and exhaustive search of the space of models, as described
previously, is exponential in the number of variables. Empiri-
cally, we have observed that a reasonable upper bound on the
order of multivariate associations is 4 (i.e., 4 parent nodes for

a child node); therefore, we could expect to capture almost all
clinically important multivariate models if we extended BMA’s
search depth to 4, which would result in a quartic increase in
search time; although this increase would render the algorithm
intractable for even voxels, we could greatly reduce
computational requirements by clustering voxels into groups
based on their states in each case, selecting a representative
voxel for each cluster, and performing higher order search on
representative voxels and function variables. In addition, we
have found that most of these higher order associations also
manifest lower order associations and are thus amenable to
greedy search, which would obviate exhaustive fourth-order
search.

Another related challenge is that the BN structures we can
generate might not be sufficiently complex to represent asso-
ciations among representative voxels and a function variable.
For example, it is possible that one or more edges among rep-
resentative voxels could yield better models, as judged by (5);
our current search algorithm does not examine such models, al-
though such an extension would be straightforward, at the cost
of increasing computational burden. Because our primary goal
is the identification of associations between voxel clusters and
the function variable, our current implementation can achieve
this goal even if it does not compare associations among repre-
sentative voxels.

An additional potential limitation of the BMA approach
is its requirement that variables be discrete. There is always
the risk of loss of information during discretization, and we
expect that when this is the case, statistics based on continuous
variables will perform better than BMA. Fortunately, in many
applications, the data can be discretized without much loss of
information; for example, in the setting of brain morphometry,
loss, gain, or no change in volume are important biological
categories, which can guide discretization. Furthermore, proper
discretization may yield more robust analysis. For example,
although density estimation methods such as Parzen windows
[42] might be used to approximate the dependency between
voxel variables and the function variable, these methods require
a large number of samples (subjects) and suffer from high
computational complexity. For our linear-detection experiment,
in which there are only 22 images, it seems that discretization,
rather than density estimation, is a more reasonable choice from
the perspective of robust analysis. For our nonlinear-detection
experiment, where there are 84 images, the enormous computa-
tional burden of density estimation makes it impractical. If the
data were drawn from a multivariate Gaussian distribution, we
could implement continuous-variable BNs [43] under the BMA
framework to analyze these data; however, it is our experience
that these image and function data rarely assume a multivariate
Gaussian distribution; we, therefore, must transform the of-
fending variable(s), or apply nonparametric analytic methods,
as alternatives to discretization and application of BMA.

Our experiments demonstrate that, although the FPRs of BC,
BT, and PT may be greater than we would wish, these methods,
and BMA in particular, yield clusters that clearly correspond
to the original structures (e.g., PCG) in which cerebral atrophy
(or ventricular enlargement) was induced, when visualized, as
in Fig. 5. The principal reason for this discrepancy lies in the
spatial distributions for false-positive and true-positive voxels;
the former will be scattered, and the latter will be spatially clus-
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tered in one or more structures. Clearly, the addition of spatial
information into BMA would decrease the FPR, and would thus
increase the utility of BMA.

Accordingly, we plan the following major areas of further
development:

1) Spatial information: incorporating spatial information
into the algorithm should increase SNR. For example, an
isolated bright point on the average binary map is usually
noise. Therefore, it may be reasonable to eliminate such
voxels, using erosion, neighborhood filtering, or proba-
bility distributions over the spatial distribution of regions
associated with function variables. More sophisticated
methods for incorporating spatial information, such as
Gaussian fields [44], or Markov random fields [45],
could be used to ensure spatial contiguity of clusters or
components of clusters, at the cost of increased compu-
tational burden.

2) Effects of smoothing kernel: Given the effects of
smoothing on subsequent morphometry [6], quantifi-
cation of the interactions among registration methods,
data-acquisition parameters (e.g., modality, sequence),
sizes of structures being analyzed, and smoothing-kernel
sizes is a prerequisite for widespread application of
morphometry.

3) Number of cases: Although we omit the derivation here,
analytically the number of cases will play an important
role in improving both SDR and SNR, as one would ex-
pect. Because we expect to work with images from hun-
dreds, or perhaps thousands, of subjects, we have empha-
sized scalability in the design of BMA.

4) Different metric and model-search heuristics: Although
we employ the Bayesian metric in (5) and propose the
heuristic method in Fig. 2, the proposed BMA para-
digm itself is independent of particular BN metrics and
heuristic model-search methods. We plan to investigate
several other approaches described in the BN learning
literature, including alternative choices for the hyperpa-
rameters , nonuniform prior distributions over BN
models, and information-theoretic metrics [20], [24],
[26], [27], [29].

To extend our validation of these methods, we are currently
evaluating data from the Baltimore Longitudinal Study of
Aging, to determine whether there are morphological indica-
tors of cognitive impairment.

VII. CONCLUSION

We have described a framework for morphology-function
analysis, based on a Bayesian-network model of associations
among image and function variables. The algorithms based on
this framework generate sets of voxels whose members have
similar probabilistic associations with the function variable(s).
Two methods implemented within this framework, BT and BC,
are examples of how this framework can be used to generate
equivalent-voxel sets. The BT method is simpler and faster,
however it requires a predefined threshold for determining
whether two voxels have similar conditional probability dis-
tributions given the function variable. The BC method utilizes
a latent-variable Bayesian-network model, and the Monte

Carlo algorithm, to generate equivalent-voxel sets. BC takes
more time than BT, however the former does not require a
user-defined threshold, which is the principal limitation of the
latter.

We compared these Bayesian methods to the -test and paired
-test for both linear and nonlinear morphology-function detec-

tion problems. Our methods succeeded in both cases, whereas
the -test failed to detect nonlinear associations.
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